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structures was assessed with subsequent tissue dissection. Dice

Study Design. Experimental in-vivo animal study.
Objective. The aim of this study was to evaluate an Artificial

Intelligence (AI)-enabled ultrasound imaging system’s ability to

detect, segment, classify, and display neural and other structures

during trans-psoas spine surgery.
Summary of Background Data. Current methodologies for

intraoperatively localizing and visualizing neural structures

within the psoas are limited and can impact the safety of lateral

lumbar interbody fusion (LLIF). Ultrasound technology,

enhanced with AI-derived neural detection algorithms, could

prove useful for this task.
Methods. The study was conducted using an in vivo porcine

model (50 subjects). Image processing and machine learning

algorithms were developed to detect neural and other anatomic

structures within and adjacent to the psoas muscle while using an

ultrasound imaging system during lateral lumbar spine surgery

(SonoVision,TM Tissue Differentiation Intelligence, USA). The

imaging system’s ability to detect and classify the anatomic
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coefficients were calculated to quantify the performance of the

image segmentation.
Results. The AI-trained ultrasound system detected, segmented,

classified, and displayed nerve, psoas muscle, and vertebral body

surface with high sensitivity and specificity. The mean Dice

coefficient score for each tissue type was >80%, indicating that

the detected region and ground truth were >80% similar to each

other. The mean specificity of nerve detection was 92%; for bone

and muscle, it was >95%. The accuracy of nerve detection was

>95%.
Conclusion. This study demonstrates that a combination of AI-

derived image processing and machine learning algorithms can

be developed to enable real-time ultrasonic detection, segmenta-

tion, classification, and display of critical anatomic structures,

including neural tissue, during spine surgery. AI-enhanced ultra-

sound imaging can provide a visual map of important anatomy in

and adjacent to the psoas, thereby providing the surgeon with

critical information intended to increase the safety of LLIF surgery.
Key words: artificial intelligence, image guidance, lateral spine
surgery, neural anatomy, porcine model, psoas muscle,
ultrasound.
Level of Evidence: N/A
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ateral lumbar interbody fusion (LLIF) is an estab-
L lished and effective surgical technique.1–5 However,
the trans-psoas approach puts elements of the lumbar

plexus at risk.6–8 To mitigate this, electromyography (EMG)
is used for detecting and avoiding motor nerves while tra-
versing the psoas and accessing the disc space. Proximity to
motor nerves is inferred using a stimulated probe within the
psoas and measuring the EMG response.6–8 Unfortunately,
this process provides neither true spatial nerve location nor
identification of sensory branches. Furthermore, patient
comorbidities (e.g., diabetes), anesthetic paralytics, electrical
interference, and technical issues can reduce the accuracy of
EMG in this setting.9,10,11 In addition, LLIF necessitates the
use of C-Arm fluoroscopy or other ionizing radiation imaging
modalities. There is increasing concern about the risk of
February 2021



Figure 1. SonoVisionTM—an Artificial-Intelligence enhanced ultra-
sound imaging system.
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radiation exposure to surgeons and patients in lateral spine
surgery as well as in other spinal procedures.12–17

Ultrasound is an important diagnostic tool because it
facilitates the visualization of patient anatomy without the
risk of radiation exposure associated with other imaging
modalities, such as fluoroscopy and computerized tomog-
raphy (CT).18–20 The use of ultrasound is ubiquitous in
some disciplines of medicine.18,21,22 Advances have
occurred in many aspects of ultrasound technology includ-
ing sensors, computer hardware, and software. It is used in
spinal applications,23,24 and has even been used in the
cervical spine in outer space.25,26

A recent review summarized the use of ultrasound in
spinal diagnostic and therapeutic applications27 and
another reviewed the use of ultrasound in spine surgery,24

claiming the use of intraoperative ultrasound was mainly for
tumors or calcified thoracic discs. A more recent study
reported the clinical evaluation of ultrasound for lateral
lumbar spine surgery.28 The potential appeal of ultrasound
for lateral spine surgery is its ability to visualize soft tissues
and vasculature using Doppler imaging with color overlays
indicating the direction and velocity of blood flow.18,28,29 In
addition, ultrasound has the potential to reduce radiation
exposure to surgeons and patients.

Given the limitations of current methodologies for intra-
operatively localizing and visualizing neural structures dur-
ing trans-psoas surgery, a need exists for improving the
safety of LLIF. Ultrasound technology, enhanced with arti-
ficial intelligence (AI)-derived neural detection algorithms,
could prove useful for doing so. In the present study, we
evaluated the use of an artificial intelligence (AI)-enabled,
real-time intraoperative ultrasound system for localization
of nerves within the psoas in an in vivo porcine model.

MATERIAL AND METHODS

Animal Model and Handling
In vivo tests were performed in porcine tissue30,31 using an
FDA-cleared ultrasound imaging system (SonoVision,TM

Tissue Differentiation Intelligence, USA) to evaluate the
performance of the system in imaging and identifying tissue
structures. The experimental protocol was approved by the
Institutional Animal Care and Use Committee at the Medi-
cal Education and Research Institute (MERI), Memphis,
TN. The pigs were anesthetized and placed in a lateral
decubitus position to simulate the LLIF approach. A retro-
peritoneal surgical approach exposed the relevant anatomy,
including the psoas. The experiments were conducted in two
phases with a total of 50 pigs. The first phase involved using
ultrasound imaging and subsequent open dissection to train
the AI software to distinguish neural anatomy in the psoas
environment. In the second phase, five of the 50 pigs were
used to test the algorithm performance.

Ultrasound Imaging
The AI-enhanced ultrasound imaging system shown in
Figure 1 was used to image the target region to detect
Spine
neurovascular structures during LLIF spine surgery. The
ultrasound imaging was performed in conjunction with
the porcine LLIF approach in the vicinity of the L4 to L6
vertebral bodies. The software was used to identify neuro-
vascular features in the targeted region of interest. In this
study, the imaging was performed using an ultrasound
probe (Beluga1, Tissue Differentiation Intelligence, USA),
with a 128-element linear array and operating at a central
frequency of 10 MHz.

After the lateral skin incision, the peritoneum was pushed
anteriorly to access the psoas muscle. The probe was
inserted through the incision to reach the surface of the
psoas muscle. The surgeon used C-Arm fluoroscopy to
locate the approximate region of interest for scanning.
The psoas was then scanned utilizing the tissue identifica-
tion features of the ultrasound system, helping the surgeon
to visualize neurovascular structures in each scan location.
C-arm fluoroscopy was used to verify the location of the
probe above the target region of the spine (Figure 2) specifi-
cally with respect to the vertebral body.

Once the location was finalized, the surgeon used a
surgical arm with attachment to hold the probe stationary
at the target location. After the probe position was fixed, the
surgeon utilized the ultrasound system to confirm the
desired path and then inserted a metal pin (1.4 mm diameter,
10–15 cm long) into the vertebral body or intervertebral
www.spinejournal.com E147



Figure 2. C-arm fluoroscopic image of the ultrasound probe above
the vertebral body of a pig spine.
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disc space with the intent of targeting either a nerve or a
clear path. Here, ‘‘clear path’’ is defined as a region without
the presence of neurovascular structure so that the metal pin
could be inserted without damaging surrounding neuro-
vascular structures. The metal pins were inserted such that,
post-imaging and euthanasia, the tissue could be dissected to
validate that the ultrasonically detected features matched
the dissected tissue in proximity to the pins. All dissections
were performed by a neurosurgeon and the dissected tissue
served as the ground truth to the presence or absence of any
anatomical features in the region of interest.

Image Processing and Classification

Segmentation
During the initial phase of the study, B-mode ultrasound
images were acquired and compared to the ground truth
information established through dissection. Specifically, the
nerve regions in the acquired B-mode images were anno-
tated based on the dissection notes. Through dissection, the
nerve regions were verified and simultaneously segmenta-
tion algorithms were developed based on image processing
techniques. The segmentation algorithm separated the B-
mode image into one or multiple regions that corresponded
with the presence or absence of neural tissue. These seg-
mented regions were sent into a classification training
process where each region was classified as either a ‘‘nerve’’
or ‘‘other’’ region.

Tapered windowing functions were used to suppress the
edges of the given B-mode image followed by applying a
Time Gain Compensation (TGC) to account for attenuation
as a function of depth. As well, the brightness of the image
was normalized. Dilation and erosion of the image were
performed, which helped form different closed or open
regions in the given B-mode image. Each of these segmented
E148 www.spinejournal.com
regions was selected and further analyzed with respect to
shape, area, aspect ratio, solidity, and threshold values. The
segments that satisfied these threshold criteria were used to
define either a ‘‘nerve’’ or ‘‘not-nerve’’ region and passed
into the machine learning model for classification. During
the training phase each of the contours was refined based on
ground truth data through dissection.

Real-time Image Annotation and Display
To increase computational efficiency and reduce computa-
tion time as well as to display detected regions in real-time, a
GeForce RTX 2080 Graphics Card (NVIDIA, USA) was
used in the ultrasound system to achieve a frame rate >15
frames per second (fps).

The U-Net Convolutional Neural Network (CNN) algo-
rithm32–34 was used to classify and detect bone and muscle
regions in a given B-mode image. In the U-Net architecture
the B-mode image was the input to the network and the
output was a probability map of the image for both bone
and muscle. This probability map was then color-coded into
RGB and alpha mapped with appropriate transparency onto
the ultrasound image and displayed on the graphical user
interface (GUI) such that the background and the overlay
were both visible.

The segmentation algorithm was used to partition the B-
mode image into regions. Using the segmentation algorithm,
the regional contours were collected. These collected con-
tours were passed into the CNN model for classification of
these segments as a nerve or other region (i.e., not a nerve).
The CNN model was used TensorFlow (Google, USA)35 to
classify the segmented regions. The classified nerve regions
were then overlaid on the B-mode image and indicated with
a solid yellow color.

Training and Validation of SonoVision Algorithm
In the first phase, training of the classification algorithm was
performed using 36,000 and 10,000 B-mode images for
nerves and bone/muscle regions, respectively. To test vari-
ous aspects of the system, both nerve regions and clear path
regions were selected. The protocol was to target nerve for
some of the metal pin insertions and, in other cases, to find a
clear path to insert the metal pin without damaging any
surrounding neurovascular tissue structures. The aim was to
validate the software both when it indicated a nerve region
and when it indicated a clear path. The second phase of the
study was to test the trained detection algorithm using
approximately 4800 B-mode images.

Figure 3A and B demonstrates the ultrasound system GUI
identifying neural tissue within the psoas and the corre-
sponding anatomical dissection. This validation process was
followed throughout the experimental study for both train-
ing the CNN model in phase one and for validating and
testing the trained CNN model in phase two.

Figure 4A and B demonstrates an example of clear psoas
anatomy with no neural tissue present along with the
corresponding anatomical dissection. The Doppler color
flow imaging mode was also enabled allowing the surgeon
February 2021



Figure 3. (A) SonoVision screen identifying a nerve region (yellow)
at approximately 20 mm depth in the muscle, (B) dissected valida-
tion of the nerve as identified in (A).
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to check for any vessels along the insertion path. An example
of Doppler mode indicating the blood flow during real-time
imaging is shown in Figure 4c.

Quantitative Metrics
To determine the similarity of the anatomical region
detected by the algorithm and the labeled annotated ground
truth, the Dice coefficient was calculated as follows:36,37

Dice ¼ 2 X \Yj j
Xj j þ Yj j � 100 (1)
Spine
where jXj and jYj are the cardinalities of the two sets (i.e.,
number of elements in each set). Here the two sets refer to
the labeled annotated ground truth region and the algorithm
detected region on a given B-mode, respectively, for each of
the tissue types. Based on the Dice score, the true positive
(TP), true negative (TN), false positive (FP), and false
negative (FN) values were defined. The sensitivity was
defined as a statistical measure of the proportion of the
actual positives that were correctly identified and was
calculated as follows:

Sensitivity ¼ TP

TP þ FN
� 100 (2)

Specificity was defined as a statistical measure of the
proportion of the actual negatives that were correctly iden-
tified and was calculated as follows:

S peci ficity ¼ TN

TN þ FP
� 100 (3)

The accuracy was calculated as follows:

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
� 100 (4)

During the second phase of the experimental study (the
validation testing phase of the system), metal pins were
inserted in the pigs using a blinded study design. The
imaging notes and the dissection notes for each of these
pins were collected separately and subsequently analyzed by
an independent observer. Since these pins were inserted
through the psoas muscle and anchored into the bone or
the disc, the detection of bone surface and muscle region was
also validated using the same pin locations. If a nerve was
seen within a radius of 1 to 2 mm from the pin then it was
considered as nerve within the vicinity of the pin. Validation
was performed via post-euthanasia dissection, visual inspec-
tion, and tactile assessment.

RESULTS
The AI-trained ultrasound system detected nerve, psoas
muscle, vertebral body surface, and disc space with high
sensitivity and specificity. For all the pins, the ultrasound
imaging recorded during the surgical approach matched the
open dissection and identification of anatomy. Thorough
dissection and gross anatomy analyses were performed
for each type of tissue: nerve, muscle, bone surface, and
disc space.

The ultrasound system identification of anatomical
features was deemed successful when the imaging notes
matched the dissection notes. For example, if the imaging
notes indicated that the user targeted a clear path and
then, post-dissection, it was observed that a nerve was
present in the vicinity of the pin, then the imaging
notes and the dissection notes did not match. This was
considered a FN indication from the system with respect
www.spinejournal.com E149



Figure 4. (A) SonoVision screen indicating clear path through the psoas without the presence of nerve regions and vertebral body cortical
surface beneath the psoas, (B) dissected tissue indicating muscle region is clear of neural tissue, and (C) SonoVision Doppler mode showing
blood flow in the vessel.
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to nerve identification. Similarly, if the imaging notes
indicated the presence of nerve and the dissection notes
also indicated the presence of nerve, then this would be
considered a TP.

In the second phase of the study to test the trained
detection algorithm, approximately 4800 B-mode images
were used to estimate the various quantitative parameters to
define the sensitivity, specificity and accuracy of the detec-
tion algorithm. These 4800 B-mode images were acquired
E150 www.spinejournal.com
using five pigs at different locations in the left and the right
psoas environments from each pig. The Dice scores from all
of the cases for nerve, bone, and muscle are shown in
Table 1. The mean Dice score for each tissue type was
>80%, indicating that the detected region and ground truth
were>80% similar to each other. The sensitivity for each of
the three tissue types was >95%. The mean specificity of
nerve detection was 92%; for bone and muscle, it was
>95%. The accuracy of nerve detection was >95%.
February 2021



TABLE 1. Results

Tissue Type Dice Score Sensitivity Specificity Accuracy

Nerve 83.81�0.20 100 93.13�0.15 96.30�0.10

Bone 90.60�0.09 100 96.42�0.38 97.12�0.20

Muscle 88.60�0.36 100 98.61�0.21 98.29�0.18
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DISCUSSION
The results of this animal study suggest that a combination of
image processing and machine learning algorithms can cor-
rectly detect different tissue types such as nerve, muscle, disc
space, and vertebral bone surface from a given B-mode
ultrasound image. The tissues can be detected, segmented,
classified, and displayed in real-time during the ultrasound
scanning process. It was observed that only 40% to 50% of
theGPUcard memorywas used during the real-timedetection
of the anatomical features. In particular, a key feature of the
algorithm is that segmentation through image processing
reduces the amount of data feed into the CNN classifier
and thus reduces computational burden. The high sensitivity
and specificity indicate the stability of the algorithm.

Machine learning has been previously used for detecting
various tissue architectures.32,38,39 To our knowledge, it has
never been used to enhance image guidance for spine pro-
cedures. In a previously conducted clinical study evaluating
traditional ultrasound for intraoperative guidance in lateral
lumbar spine surgery,28 the investigators used a transvaginal
probe to ensure the operative corridor was free of other soft
tissues such as kidneys and bowel. These investigators
reported that the major vessels anterior to the vertebral
body were identified using Doppler-mode in all 100 patients
in their cohort. They did not identify neural structures
within the psoas muscle.

The present study focused on the lateral surgical
approach to the lumbar spine. Ultrasound using Doppler
mode can provide real-time information concerning the
location of surgical instruments relative to critical vascular
structures. This could be beneficial in cases where patients
have aberrant anatomy or in more complex spine cases, such
as procedures where there is greater concern for vascular
structures (e.g., OLIF and more complicated deformity
corrections,3,40–47 especially since vascular complications
have been reported in the 0.3%–8.6% range).44,45,48

The study focused on AI algorithms for neural anatomy
detection. These algorithms are deep learning methods
whose performance improves with training. In other
words, the system is self-educating such that its output
(in this case, anatomic feature detection within the psoas
and elsewhere) improves with additional data input. One
of the study’s limitations was that the Doppler-mode was
only used to detect the presence of flow and was not
analyzed in a quantitative fashion. Also, this study did
not focus on quantifying the potential of the AI-enhanced
ultrasound system to reduce radiation exposure. This
potential benefit for health care constituents (surgeons,
patients, and OR personnel) will be evaluated in subse-
quent clinical trials.
Spine
The present study incorporated a lateral surgical approach
that simulated LLIF procedures in a porcine model. AI-
enhanced ultrasound imaging provided a real-time spatial
map of the critical anatomy present in the surgical field. Most
importantly, the real-time intraoperative imaging demon-
strated the presence and location of neural structures within
the psoas muscle. These nerves are not evident with other
intraoperative imaging modalities and are only indirectly and
incompletely localized with intraoperative electrical testing.
Applied to humans, the real-time guidance provided by this
technology should enable a surgeon to quickly identify neural
structures and define a safe path to the disc space while
minimizing radiation exposure.
Key Points
The study evaluated the use of an AI-enabled,
real-time intraoperative ultrasound imaging
system for localization of nerves and other
anatomic structures within and adjacent to the
psoas muscle in an in vivo porcine model of LLIF.

AI-enhanced ultrasound imaging provided a real-
time spatial map of the critical neural anatomy
present in the surgical field during lateral
spine surgery.

This technology is intended to enable a spine
surgeon to choose a safe pathway to the lateral
lumbar spine.
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